Following is a 3 step solution for converting Binary tree to Binary Search Tree. 1) Create a temp array arr[] that stores inorder traversal of the tree. This step takes O(n) time. 2) Sort the temp array arr[]. Time complexity of this step depends upon the sorting algorithm. In the following implementation, Quick Sort is used which takes (n^2) time. This can be done in O(nLogn) time using Heap Sort or Merge Sort. 3) Again do inorder traversal of tree and copy array elements to tree nodes one by one. This step takes O(n) time. Solution: /** * */ package com.bst; /** * @author Abhinaw.Tripathi * */ import java.util.Arrays; import java.util.LinkedList; public class ConvertBinaryTreeToBST { class QueueNode { TreeNode treeNode; int level; QueueNode(TreeNode node, int level) { this.treeNode = node; this.level = level; } } class TreeNode { TreeNode left; TreeNode right; int value; public TreeNode(int value) { this.value = value; } } TreeNode root; int treeSize; private TreeNode createTree() { this.root = new TreeNode(0); TreeNode n1 = new TreeNode(1); TreeNode n2 = new TreeNode(2); TreeNode n3 = new TreeNode(3); TreeNode n4 = new TreeNode(4); TreeNode n5 = new TreeNode(5); TreeNode n6 = new TreeNode(6); TreeNode n7 = new TreeNode(7); TreeNode n8 = new TreeNode(8); root.left = n1; root.right = n2; n1.left = n3; n1.right = n4; n2.left = n5; n3.right = n6; n5.right = n7; n6.right = n8; treeSize = 9; return root; } public void printTreeLevelOrder() { if (root == null) return; LinkedList queue = new LinkedList(); queue.add(new QueueNode(root, 0)); int maxLevelVisited = -1; while (!queue.isEmpty()) { QueueNode currentNode = (QueueNode) queue.remove(); if (currentNode.level > maxLevelVisited) { maxLevelVisited = currentNode.level; System.out.print("\nlevel-" + currentNode.level + " nodes: "); } System.out.print(" " + currentNode.treeNode.value); if (currentNode.treeNode.left != null) { queue.add(new QueueNode(currentNode.treeNode.left, currentNode.level + 1)); } if (currentNode.treeNode.right != null) { queue.add(new QueueNode(currentNode.treeNode.right, currentNode.level + 1)); } } } private void createInorderArray(TreeNode currentNode, int[] inorder, int[] index) { if (currentNode == null) { return; } createInorderArray(currentNode.left, inorder, index); inorder[index[0]] = currentNode.value; index[0] += 1; createInorderArray(currentNode.right, inorder, index); } private void changeNodeValues(TreeNode currentNode, int[] inorder, int[] index) { if (currentNode == null) { return; } changeNodeValues(currentNode.left, inorder, index); currentNode.value = inorder[index[0]]; index[0] += 1; changeNodeValues(currentNode.right, inorder, index); } public void changeTreeToBST() { int[] inorder = new int[treeSize]; int[] index = new int[1]; createInorderArray(root, inorder, index); Arrays.sort(inorder); index[0] = 0; changeNodeValues(root, inorder, index); } public static void main(String[] args) { ConvertBinaryTreeToBST solution = new ConvertBinaryTreeToBST(); solution.createTree(); solution.changeTreeToBST(); System.out.print("Modified tree to BST: \n"); solution.printTreeLevelOrder(); } }
top of page
bottom of page